
12 04/2013

W
EB

 E
XP

LO
iT

AT
iO

N

Exploiting File Uploads
for Fun and Profit
File uploading is a scary thing for web developers. You’re allowing
complete strangers to put whatever they want onto your precious
web server. By uploading malicious code, an attacker can
compromise the web server or even serve malware to its users. This
article explores the risk of remote code execution associated with
insecure file uploads, its exploitation and its mitigations.

Web based file upload provides a simple
way of accepting content from the us-
ers. It is a common requirement to al-

low users to upload files as it increases business
efficiency. Whether it is a social networking site
such as Facebook or Twitter, or a job portal, or
web forums or blogs, websites often require us-
ers to upload their own content such as images,
videos, documents and various other file types.
File uploads, however, represent a significant
risk to the web applications. Any attacker wants
to find a way to get a code onto a victim system,
and then looks for a way to execute that code.
Using an uploaded file upload accomplishes this
first step.

A Simple File Upload
Let us take a simple example of an application that
does not impose any restrictions on the uploaded
content. A file upload form usually consists of a HT-
ML form and a upload script. The example below
shows a code snipped for a HTML form and a PHP
script (Listing 1 and Listing 2).
The HTML form provides the interface for the
user to select and submit a file to upload, while
the PHP script receives the file from the HTML
form and places in the specified directory. When
the HTML form is submitted, the PHP script re-
ceives a POST request with encoding multipart/
form-data, it creates a file in a temporary direc-
tory. PHP also populates the global array $ _
FILES with the information about the uploaded
file. Figure 1 shows an upload request sent to a
web server.

Unrestricted File Uploads: A simple case
Let us take an example of an upload application
where there are no restrictions on the uploaded

Listing 1. HTML Form

HTML Form
<form action=”upload.php” method=”POST”

enctype=”multipart/form-
data”>

Username: <input type=”text” value=”username” />
Select a file to upload: <input name=”fileID”

type=”file” />

<input type=”submit” value=”Upload File” />
</form>

Listing 2. PHP Script

PHP upload script
<?php
$target_path = “uploads/”;
$target_path = $target_path . basename($_

FILES[‘fileID’][‘name’]);
if (move_uploaded_file($_FILES[‘fileID’][‘tmp_

name’], $target_path)) {
 echo “The file “ . basename($_FILES[‘fileID’]

[‘name’]) . “ has been
uploaded”;

} else {
 echo “Error uploading file!”;
}
?>

www.hakin9.org/en 13

file. A malicious user can upload malicious code
(for e.g. in the form of a malicious PHP script) and
then execute it by opening the uploaded page in
browser. A common approach is to upload a web
shell that enables an attacker to execute arbitrary
commands on the server. A web shell is nothing
but a script that accepts commands through GET
or POST requests. Commands executed using a
web-shell will execute with the privileges of the
web server.

Common Protections
Upload application often enforce some restrictions
on the file being uploaded. Some of the common
restrictions enforced by upload applications are
enumerated below:

• Blacklist / whitelist certain file extensions
• Content-type / Mime-type check
• File header validation
• Content format
• Image compression

Defeating common restrictions
Let us have a look at some of the methods to by-
pass common restrictions used by the file upload
applications.

Using double extensions
Some web developers try to filter uploads by ex-
tracting the file extension of the uploaded file by
looking for the ".″ character in the filename, and
then checking whether the extension is present
in a whitelist. Such a naive check can easily be
bypassed by using filenames with double exten-
sions. The content interpreted by the web server
often depends on the ordering of two extensions
and server configuration.

For Apache web server, when handling files with
multiple extensions, the ordering of extensions is
irrelevant if only one of the extensions is in the list
of mime-types known to the server, or if both the
extensions map to the same mime-type. If both
the extensions are known to the server, the one
the right takes precedence. For e.g., if .gif maps
to mime-type image/gif and .php maps to mime-
type text/php, then a file named‚ test.php.gif’ will
be associated with mime-type image/gif and a file
named‚ test.gif.php’ will be associated with mime-
type text/php. Also a file named‚ test.php.abc’ will
be associated with mime-type text/php if extension
‘abc’ is not specified in the list of mime-type known
to the server. That means, an attacker can upload
a file with a double extension such as file.php.xyz
and it will be interpreted as php code by Apache,

‘xyz’ being one of the extensions not specified in
the list of known mime-types.

On IIS 6, it is possible to execute ASP code by
uploading a file with an extension such as ‘.asp;.
jpg’. Note the semicolon between the two exten-
sions. The upload application may treat the file as
an image due to .jpg extension and the IIS serv-
er would stop parsing the referred URL at the first
semicolon, treating the file as an ASP script. This
approach works with other extensions such as .cer
and .asa as well.

Using NULL byte
An attacker can also try to bypass blacklisting by
using a NULL byte. A NULL byte can be insert-
ed after the forbidden extension in the filename
which ends with an extension that is permitted.
This can be done using a web proxy by using a
filename such as test.php%00.jpg if the upload
application uses URLDecode or the filename is in
the URL itself. Otherwise, the request can be ed-
ited to make a character between the two exten-
sions as NULL (Figure 2).

Uploading .htaccess file
Web applications often blacklist specific file exten-
sions when uploading files. Blacklisting involves
creating a list of extensions considered dangerous
and refusing to upload the file if the file has an ex-
tension that is on the list. Blacklisting is often easy
to bypass as it is almost impossible to create a list

Figure 1. An Upload Request

Figure 2. Editing the Filename in a Web Proxy to Insert a
NULL Byte. Notice the Second ‘.’ Changed to a NULL Byte

14 04/2013

W
EB

 E
XP

LO
iT

AT
iO

N

that includes all the possible extensions that an at-
tacker can use. Often these extensions depend
on the hosting environment and its configuration.
An Apache web server hosted on a Linux platform
may support a number of scripting languages such
as Python, PHP, Perl etc. Failure to include any
one of these may leave the server vulnerable.

A malicious user can also bypass file extension
check by uploading a .htaccess file. A .htaccess
file is a directory specific configuration file. It can
override server configuration for the directory it is
placed in, and for all the sub-directories. An attack-
er can upload a .htaccess file with the following
line of code to bypass the file extension check.

AddType application/x-httpd-php .jpg

The above line instructs Apache web server to
execute .jpg files as PHP code. A malicious user
can now upload a .jpg file containing PHP code.

Overwriting existing files
File upload applications often use .htaccess file in-
side the upload directory to restrict the execution
of scripts from that directory. Typically, .htaccess
files contain the following code to prevent execu-
tion of scripts:

AddHandler cgi-script .php .pl .py .jsp .asp .htm
.shtml .sh .cgi

Options –ExecCGI

Upload application often make use of move _
uploaded _ file() to move the uploaded file from
the temporary directory to the destination direc-
tory. This function overwrites the destination file
if it exists. So a malicious user can name the file
to be uploaded as .htaccess to replace the exist-
ing .htaccess file. This will enable him to execute
scripts from the upload folder and compromise the
server. Other sensitive files that can be overwritten
include web.config, crossdomain.xml, global.asa,
global.asax, clientaccesspolicy.xml etc.

On a server hosted on Windows platform, an at-
tacker can make use of 8.3 filename support to
overwrite sensitive files. An 8.3 filename is a file-

name convention used by old versions of DOS and
Windows to name files, although it is even sup-
ported by the newer versions of Windows for back-
ward compatibility. Under 8.3 filename convention,
filenames consist of at most eight characters fol-
lowed by a period ‘.’ and an extension of at most
three characters. Since under 8.3 filename sup-
port, web.config can be written as WEB~1.CON,
an attacker can overwrite an existing web.config
file by uploading a file named WEB~1.CON. This
is particularly useful when the upload application
blacklists certain filenames for upload files.

Bypassing image header validation
File upload applications often try to validate image
header to verify that the file uploaded is indeed an
image, or where image files are required to be up-
loaded and then modified, for e.g., to be displayed
as profile picture etc. This is typically done using
the functions such as getimagesize() in PHP. If
the header is valid, it returns the size of the image,
otherwise it returns false. So if a malicious user
tries to disguise a PHP file as a .png file by simply
changing the file extension, this function will return
false and he won’t be able to upload the file.

However, this approach can be bypassed by in-
serting the PHP code in a valid image file. Image
files can contain metadata information such as
author, title, copyright, comments etc. which may
contain arbitrary text. An image can be edited us-
ing an image editor such as Gimp or the command
line jhead tool, to insert PHP code in the metadata.

jhead -cl “<?php phpinfo(); ?>” panda.jpg.php

Figure 1 shows the above PHP code in the image
file. Such a technique usually makes use of _ _
halt _ compiler(); after the code, which stops the
compiler from parsing image data and interpreting
it as code. This is done because if a <? appears in
the following image data, the execution will break.
Figure 2 shows phpinfo() being run from within
the comment field of an image. Notice the first few
bytes of the JPEG header being displayed as gib-
berish on the page.

Using Alternate Data Streams
On servers hosted on Windows based platforms
with NTFS file systems, it is possible to bypass up-
load restrictions imposed by a blacklist based ap-
proach using Alternate Data Streams (ADS). ADS
are file system based forks for NTFS file systems.
These are used to store additional information with
a file such as file access time, modification time or
other metadata. A stream associated with a file is Figure 3. PHP Code in a JPEG File

www.hakin9.org/en 15

referred as filename:streamname. Every file in a
NTFS volume has at least one data stream called
:$DATA, which contains the contents of the file. The
following two command lines result in hello being
inserted in the file test.txt.

echo hello > test.txt
echo hello > test.txt::$DATA

Therefore, a file test.txt can be referred as text.
txt::$DATA as well. For the fact that blacklist
based approaches typically check the last exten-
sion of the filename, it is possible for an attack-
er to use a filename such as shell.php::$DATA for
the upload file, which will result in the file contents
being written in shell.php. A file upload vulnerabili-
ty was exploited in a similar way in FCKEditor 2.x.

Uploading a folder
On IIS 6, it is possible to execute code by uploading
an allowed file type containing code inside a folder
which ends with an executive extension such as .asp,
e.g. from file folder.asp\file.txt. Besides, it is possible
to create a folder on NTFS based servers using ADS.
If the filename ends with ::$Index _ Allocation or
:$I30:$Index _ Allocation, a folder will be created in-
stead of a file. For e.g., if an attacker uses a filename
test.asp::$Index _ Allocation, a folder named test.
asp will be created in the upload folder. This method
can be used to bypass blacklist based approaches
and is particularly useful when an attacker can later
place a file in the newly created folder.

Other Risks
Exploiting file upload vulnerabilities enables an at-
tacker to run arbitrary code on the server. Apart
from code execution, there are plenty of things an

attacker can do, depending upon his motive and
the extent of his access ranging from cross-site
scripting (XSS) to denial of service (DoS). Some of
these have been enumerated below.

• Phishing: Upload fake login page
• Cross site scripting: Upload HTML files con-

taining script that steal cookies
• Serve malware
• DoS: Consume server’s hard drive by upload-

ing a large number of files
• Upload trojan or virus
• Exploit local vulnerabilities on server such as

image library flaws

Mitigations
The following best practices can be enforced by
the web applications to secure servers from exploi-
tation of file upload vulnerabilities.

• Store the uploaded file outside the document
root or in database.

• Do not rely on content-type request header or
the file extension to identify file content.

• Compression can be used to store images.
• The names of the uploaded files can be ran-

domized.
• Do not rely on client side validation.
• Place the .htaccess file in the parent directory

and not in the upload directory.
• Restrict size of the upload files.
• Disable overwriting of existing files.

Conclusion
As seen above, there are several ways how a ma-
licious user can bypass file upload form security.
For this reason, when implementing a file upload
form in a web application, one should make sure
to follow correct security guidelines and test them
properly. Unfortunately, to perform the number of
tests required, can take a lot of time and require a
good amount of web security expertise.

PANkAj kOHLi
Pankaj works as a security consultant
in one of the world’s largest banks. In
his free time, he likes to dig deep in pro-
grams trying to uncover vulnerabilities.
He holds a Master of Science in Comput-
er Science from IIIT, Hyderabad (India).
Blog: http://www.codepwn.com.Figure 4. phpinfo() in Action from within an Image File

http://www.codepwn.com

	Previouse Page:
	Page 12:
	Page 14:

	Go To Next Page:
	Page 12:
	Page 14:

	Previouse Page 1:
	Page 13:
	Page 15:

	Go To Next Page 1:
	Page 13:
	Page 15:

