
Using Virtual Machine Protections 
to Enhance Whitebox Cryptography 

 

Joseph Gan, Roddy Kok, Pankaj Kohli, Dr. Yun Ding, Benjamin Mah 
V-Key Pte. Ltd. 

Singapore, Singapore 
{joseph.gan, roddy.kok, pankaj.kohli, yun.ding, benjamin.mah}@v-key.com 

 
 

Abstract—Since attackers can gain full control of the mobile 
execution environment, they are able to examine the inputs, 
outputs, and, with the help of a disassembler/debugger the result 
of every intermediate computation a cryptographic algorithm 
carries out. Essentially, attackers have total visibility into the 
cryptographic operation. 

Whitebox cryptography aims at protecting keys from 
disclosed in software implementation. With theoretically 
unbounded resources a determined attacker is able to recover 
any confidential keys and data. A strong whitebox cipher 
implementation as the cornerstone of security is essential for the 
overall security in mobile environments. 

Our goal is to provide an increased degree of protection given 
the constraints of a software- solution and the resource-
constrained, hostile-host environments. We seek neither perfect 
protection nor long-term guarantees, but rather a practical level 
of protection to balance cost, security and usability. Regular 
software updates can be applied such that the protection will 
need to withstand a limited period of time. V-OS operates as a 
virtual machine (VM) within the native mobile operating system 
to provide a secure software environment within which to 
perform critical processes and computations for a mobile app. 

Keywords—Virtual Machine Protections (VMP), Code 
Obfuscation, Data Obfuscation, Anti-Reverse Engineering, Anti-
Debugging, Whitebox Cryptography (WBC), Software 
Renewability, Mobile Code, Software Tamper Resistance, 
Fingerprinting, Software Licensing. 

 INTRODUCTION I.
In open literature, the strongest whitebox cipher 

implementations [3], [5] do not provide protections that are 
adequate for memory and performance constrained mobile 
environments. Moreover, given that attackers are increasingly 
employing dynamic attacks against software [6], the research 
papers do not address how to protect the concrete whitebox 
implementations in a hostile environment. 

In this paper, we present a strategy that uses Virtual 
Machine Protections as defence-in-depth to strengthen 
whitebox cryptography implementations.  A virtual machine, 
V-OS, is designed with multiple layers of protection that 
adopts a practical whitebox AES implementation, and 
enhances it with multiple V-OS VM protection techniques.  
The use of our own virtual machine allows for control over the 
operating environment in a way that allows the 

implementation of a number of protection mechanisms in the 
virtual operating environment that would not otherwise be 
possible in iOS or Android using a user-space application.   
The virtual machine integrates the whitebox AES 
implementation with the virtual machine protections so that a 
replacement attack cannot be carried out [7].  We have built 
and provided an initial version of this in a commercial 
product, and are continuing to implement additional 
protections and strengthen the existing mechanisms.  V-OS 
provides cryptographic functions within the virtual machine 
that can be called either by native Android and iOS mobile 
applications, or by virtual V-OS Trusted Applications running 
within the virtual machine.  V-OS can also support software 
updates for the AES whitebox implementation as 
recommended by M. Jakobsson and M.K. Reiter [8]. 

In Section II we describe the limitations of the current 
table-based implementation of AES proposed by S. Chow, P. 
Eisen, H. Johnson, and P.C. van Oorschot in 2002 [1]. We also 
describe other whitebox implementations that we consider 
unsuitable for mobile usage at this time because of their 
comparably higher memory demand. 

In Section III, we introduce a hardened virtual machine 
architecture, V-OS, which we use as the foundation for 
protecting a whitebox implementation.  V-OS is designed to 
operate as a virtual Secure Element that complies with Global 
Platform standards and architectures for financial transactions 
[11].  The objective is to provide a tamper-resistant software-
based root of trust that can then enable a variety of mobile use-
cases for identity, authentication, and authorisation. 

In Section IV we elaborate on how the data in the 
whitebox AES algorithm (e.g., look-up tables and S-box) is 
obfuscated to make the data indistinguishable from random 
permutations. Moreover, they are dynamically addressed to 
hide the algorithm’s execution flow. We describe how this 
compels an attacker to reverse engineer the entire code base or 
significantly larger code segments in an attempt to achieve 
their goals. 

In Section V, we describe how the firmware byte-code is 
obfuscated at multiple levels, source code, and assembly code.  
To protect the firmware binary from static analysis, part of the 
source code is itself dynamically modified at byte-code level 
during run-time prior to use.  Prior to assembly, dead code and 
random data is injected to the assembly code.  The order of 
data and code in the binaries are also randomised prior to 

2015 IEEE/ACM 1st International Workshop on Software Protection

978-1-4673-7094-3/15 $31.00 © 2015 IEEE

DOI 10.1109/SPRO.2015.12

17



assembly.  Code obfuscation is designed to obfuscate across 
the entire firmware, so that an attacker needs to reverse 
engineer the entire binary with each new firmware. 

In Section VI, to prevent attackers from attacking V-OS on 
their own devices, we describe further protections, including 
V-OS anti-debugging, memory encryption and native code 
obfuscation, which make it harder for attackers to achieve 
their goals of reverse-engineering the whitebox system.  We 
also describe how V-OS is designed to be non-portable; it 
should only run on the primary device it is installed on, much 
like a physical entity.  The V-OS firmware can be bound to a 
device using a device fingerprint as an additional precondition 
for the obfuscation and deobfuscation of code and data. 

We evaluate the performance and security characteristics 
of V-OS in Section VII, and propose ways in which this 
cryptosystem can be further improved in Section VIII, 
including strengthening the ties between the WBC and VMP, 
leveraging additional protections in the VMP, exploring the 
possible use of custom S-boxes, and studying how these 
protections can be applied to public key cryptography.  

 LIMITATIONS OF CURRENT WHITEBOX AES II.
IMPLEMENTATIONS 

This section will briefly cover the original whitebox AES 
implementation by S. Chow, P. Eisen, H. Johnson, and P.C. 
van Oorschot in 2002 [1], as well as consider several other 
alternatives. 

A. Whitebox Scenario 
In a typical blackbox attack scenario, an attacker attempts 

to recover the key used in an implementation of a 
cryptosystem by looking at a long paired list of plaintext and 
ciphertext, and deducing or guessing the key used.  In the 
whitebox scenario, an attacker has access to the execution 
environment including the content of the runtime memory, 
firmware binary, and may have made inroads in deducing the 
source code.  In the worst case, the attack has the full source 
code for the implementation, for which recovering the key 
used in a standard AES implementation is a trivial exercise. 

Whitebox AES is a mathematical approach to 
implementing AES with a given key that makes it difficult to 
recover the key even if the source code is known.  This can be 
loosely classified as a form of code obfuscation, but with more 
formal mathematical foundations, so as to obtain a complexity 
measure of the level of difficulty. 

B. Original Table-Based AES Implementation 
The above definition of AES is implemented as a series of 

look-up tables, with every table used exactly once.  To 
transform the AES implementation without modifying the 
output, randomly chosen self-cancelling input and output 
encodings and mixing bijections are inserted at the start and 
end of consecutive tables.  From the randomised tables, it will 
be difficult to deduce the inserted encodings directly, which 
are necessary for deducing the embedded key.  Note that this 
design ensures that the blackbox behaviour of an AES 
implementation remains unchanged even after transformation. 
This means that a standard blackbox AES implementation can 

be used to decrypt ciphertexts resulting from a whitebox AES 
implementation. 

An attacker who has successfully recovered all the tables 
used in the implementation will still be faced with a 
mathematical problem of guessing the encodings and 
bijections used in order to retrieve the keys. 

TABLE I. ORIGINAL WHITEBOX AES TABLE SIZES 

Mapping Original 
Size 

Original 
No. of Tables 

Original 
Total Size 

8-bit to 32-bit 1024 bytes 288 288 KB 

8-bit to 4-bit 128 bytes 1728 216 KB 

8-bit to 8-bit 256 bytes 16 4 KB 

TOTAL SIZE OF TABLES 508 KB 

 
Each such implementation will require around 500 KB of 

table data (see TABLE I) per transformed AES 
implementation, while the time complexity of the 
implementation is approximately 220. 

With access to the source code of such an implementation, 
using the BGE attack by O. Billet, H. Gilbert, and C. Ech-
Chatbi from 2004 [2], it is known that a work factor of less 
than 230 is sufficient to recover the keys used in such a 
whitebox AES implementation. 

C. Alternative Whitebox Implementations 
In 2009, Y. Xiao and X. Lai [3] proposed a new whitebox 

AES implementation designed to be resistant to the BGE 
attack.  This approach required 20502 KB, and had an 
increased time complexity of 224.  Subsequent cryptanalysis by 
Y. De Mulder, P. Roelse, and B. Preneel in 2012 [4] showed 
that a work factor of approximately 232 would be sufficient to 
recover the AES key. 

S. Yang, Q. Liu and Q. Zhao proposed another approach in 
2013 [5] based on SHARK that required less table data of 
14339 KB and had a higher security level, but was much 
slower.  However, the amount of table data required is still 
largely infeasible for a constrained mobile or embedded 
environment. 

 STRENGTHENING WHITEBOX RESISTANCE USING VMP III.
Whitebox implementations for mobile environments need 

to be small enough to be feasible, but current whitebox 
implementations are either too large to be practical for 
constrained mobile environments or too weak by themselves. 

To strengthen the implementation of a weaker whitebox 
implementation that can be small enough to be used in a 
mobile environment, we have developed a hardened virtual 
machine, V-OS, that adds considerable protection for both the 
data (look-up tables) and the code (addressing instructions) to 
make the recovery of the source code itself a difficult task. 
The use of a hardened virtual machine provides increased 
isolation for the operating environment where the whitebox 
cryptographic implementation is executed, allowing for the 
implementation of additional protection methods around the 

18



�

�

whitebox solution.  Some of the data and code obfuscation 
methods that can be used are described in Sections IV and V. 

The overall architecture of V-OS is described in Fig. 1.  
Section VI describes a number of protection mechanisms that 
help to isolate V-OS from both the mobile application as well 
as the native runtime environment (RTE), which is currently 
on iOS and Android.  These are designed to provide protection 
against both reverse engineering and dynamic attacks on the 
cryptosystem.  V-OS then provides specific interfaces to 
interact with the underlying runtime environment or for the 
mobile application to interact with V-OS. 

 
Fig. 1. Overall Architecture of V-OS 

This isolated virtual machine operating environment, 
similar to a hardware secure element, also allows the use of a 
whitebox solution in higher-security environments where 
certifications such as Common Criteria and FIPS 140-2 Levels 
2 and above require the cryptographic implementation to be 
executed in a hardened isolated operating environment.   

 DATA OBFUSCATION IV.

A. Whitebox AES Data 
The V-OS firmware binary can contain both the code and 

data to be obfuscated, and can be updated in a fully obfuscated 
form.  This allows for the lookup table randomisation and 
AES key to be replaced, depending on validity periods defined 
in the customer’s security policy around V-OS use.  As code 
and data obfuscation is performed across the entire firmware 
file, there will be significant differences in the firmware 
binaries, making it difficult to glean useful information on the 
location of the algorithm by comparing updates. 

As the lookup tables for the whitebox AES implementation 
are normally chosen to ensure that every table is used at most 
once, there is considerable redundancy in the form of 
replicated tables prior to the insertion of random bijections.  
Besides that, the different entropy levels and structures of the 
three table types make it easier for an attacker to distinguish 
between the tables, and accelerate the reverse engineering 
process. 

In the event the code is indistinguishable to the attacker, 
the attacker can attempt to trace the execution path of the 
whitebox AES algorithm in the static code and painstakingly 
map the data to the rounds to which each lookup table belongs 
to.  While a few thousand lookups are needed per execution, 
this is by no means an insurmountable task if the code flow is 
not obfuscated. 

To deny the attacker a straightforward and certain trace of 
the execution path, the data are stored obfuscated in static 
form, and are deobfuscated by a process triggered outside the 
execution of the whitebox AES algorithm.  This ensures that 
tracing the execution of the algorithm itself is insufficient to 
recover the source; debugging and tracing the execution of all 
processes will be necessary to mount an attack. 

B. Data Masquerade 
To make the lookup tables indistinguishable from each 

other, each of the larger tables of 1024 bytes are broken up 
and stored as four 256-byte arrays.  Two smaller 128-byte 
tables are combined to form a 256-byte array.  The existing 
256-byte tables exist as 256-byte arrays.  As the tables have 
differing entropy patterns, we can use a data obfuscation 
routine to modify the byte values to increase the entropy for 
all the tables. 

With this modification to the data set, the lookup tables 
appear as 2032 256-byte arrays in the firmware binary.  To 
take the indistinguishability further, the addressing to each 
table is dynamic in that it may be modified at runtime.  The 
code size taken per table is 4 bytes for the address and 8 bytes 
for the V-OS instruction, so the additional code size is 2032 * 
12 bytes = 24 KB.  The final configuration of obfuscated 
tables is as follows (see TABLE II): 

TABLE II.  OBFUSCATED WHITEBOX AES TABLE SIZES 

Mapping Obfuscated 
Size 

Obfuscated 
No. of Tables 

Obfuscated 
Total Size 

8-bit to 32-bit 256 bytes 1152 288 KB 

8-bit to 4-bit 256 bytes 864 216 KB 

8-bit to 8-bit 256 bytes 16 4 KB 

TOTAL SIZE OF TABLES 2032 508 KB 

Size used for addressing tables in firmware 24 KB 

TOTAL SIZE INCLUDING ADDRESSING 532 KB 

C. Table Address Obfuscation 
Having all lookup tables exist as byte permutations, 

addresses of the tables may be permuted prior to restoring the 
data values.  Furthermore, without prior knowledge, it is 
difficult to determine if the current addressing of tables is the 
correct state. 

The deobfuscation process not only restores the data values 
to its original form for the correct execution of the algorithm, 
but also restores the addresses of the tables.  The 
deobfuscation process can be implemented as multiple 
independent processes, so that no fixed call sequence is 
necessary.  To determine if the whitebox AES is in the correct 

Mobile App 

V-OS Firmware 
+ 

Obfuscated 
Whitebox 

Implementation 

 

V-OS Processor 

 
 

Native Runtime Environment 

V-OS 
Wrapper 

  

V
-O

S
 Is

ol
at

io
n 

  V-OS Isolation Native RTE 
Interface 

  

19



state for execution, it suffices to ensure that every 
deobfuscation sub-process has been executed. 

 CODE OBFUSCATION V.

A. V-OS Firmware Byte-Code 
V-OS is implemented in C, which is then compiled into 

assembly code before being assembled into byte code.  V-OS 
currently uses a Reduced Instruction Set Computing (RISC) 
set of instructions that is interpreted within a virtual processor, 
although there is little performance implication if this is 
changed to a Complex Instruction Set Computing (CISC) 
architecture or if more instructions are added for improved 
functionality or performance.  At the byte code level, data and 
code are both addressed using the byte representation of their 
addresses, and reverse engineering of the source code is done 
via following the addressing of the functions and data used in 
each event.  The techniques described in this section have 
been selected to increase the difficulty of an attacker in 
analysing the compiled V-OS code, especially in the analysis 
of the table data lookups, without significantly slowing the 
performance of the cryptographic functions, although there are 
many other well-known source code and binary obfuscation 
techniques that also can be applied within the V-OS firmware 
codes. 

B. V-OS Function Call Obfuscation 
Static analysis involves studying the firmware code, 

typically from a known point of entry (e.g. boot), to trace the 
byte code that is called.  The aim of generating obfuscated 
function calls is to modify the data and function addressing at 
runtime, so that tracing an expected execution path on the 
static code alone is insufficient, as the execution path is 
changed not at the source code level but at the byte code level.  
For example (see Fig. 2): 

 
function1();  // address = 0x00274100 
 
function2();  // address = 0x00274200 
 
modify_addr() { 
 // modify the address for function1 
 function1 += 0x0100; 
} 
 
void main() { 
 // modifies the address of function1 
 modify_addr();  
 
 // calls function2 instead of function1 
 function1();  
} 
 

Fig. 2. Example of V-OS Function Call Obfuscation 

Having multiple dynamic function call generation pieces 
implies that all functions in an execution path may impact the 
algorithm used.  An attacker will thus have to trace all 
execution paths or reverse engineer the entire binary to 
discover exactly the state of the algorithm at the time of 
execution. 

C. V-OS Assembly Code Obfuscation 
After the source code has been compiled into assembly 

codes, more obfuscation can take place.  Obfuscation at this 
level has a more direct effect on the binary that the attacker 
sees. 

An additional obfuscation that can be performed at the 
assembly level is the insert of dead code, which is code that 
has no effect during execution or is never executed, e.g. mov 
r1, r1. 

In a similar fashion, dummy code or data are injected at 
this point, to misdirect attackers.  Compared to dead code, 
dummy code or data usually refers to bytes that resemble 
actual byte codes, but are also not actually used. 

To guard against pattern matching, commonly used during 
reverse engineering to save effort on duplicated code, certain 
C code will generate different polymorphic byte code 
equivalents.  For example (see Fig. 3): 

 
mov r1, 0 � mov r2, 0 
 
mov r1, 0 � xor r1, r1 
 

Fig. 3. Examples of V-OS Assembly Code Obfuscation 

 FURTHER PROTECTIONS VI.
In addition to the obfuscation of code and data, V-OS is 

deployed with additional protections that limit the scope for 
attempts to reverse engineer the code. 

A. V-OS Device Fingerprint 
In V-OS, device fingerprint (DFP) is used to bind V-OS to 

a specific device, and prevent V-OS from running and being 
reverse-engineered on a device chosen by the attacker.  The 
objective of the DFP function is to prevent an attacker from 
cloning the V-OS firmware and spoofing the DFP attributes on 
another device. 

The DFP is defined as a high entropy variable that takes 
the aggregate value across several unique device identifiers 
and an application identifier.  The inclusion of the application 
identifier is to prevent an attacker from using a V-OS 
firmware designed for one application in another, even on the 
same device.  The device fingerprint is computed as a hash of 
a concatenation of the single application identifier, followed 
by the device identifiers in order of decreasing entropy.  These 
device identifiers include globally unique identifiers such as 
the CPU serial number and IMEI in Android, and the 
motherboard serial number and processor identifiers in iOS. 

To trust the device fingerprint, various techniques have 
been implemented to check the integrity of these identifiers, 
by verifying that the sources of these device identifiers 
themselves are trusted.  These include verification of function 
pointers, cross-checking and validation of critical functions 
against known libraries and frameworks, detection of known 
native hooking techniques in both iOS and Android native 
libraries, and detection of Android Dalvik runtime 
manipulation via Java method validation. 

20



�

�

When the V-OS virtual machine starts up, the DFP is 
collected and verified from within the V-OS firmware. 
Combined with the unique identifier of a personalised V-OS, 
the DFP is used to derive a secret device key, which can also 
be used to generate One Time Passwords for device 
authentication. 

For personalised V-OS, the DFP can be used to generate 
an additional input to the obfuscation of whitebox AES data 
and code, so that its absence will deny an attacker from 
retrieving the algorithm source. 

B. V-OS Anti-Debugging 
V-OS implements debugger detection at multiple layers to 

provide a comprehensive detection mechanism in order to 
detect and block debuggers. In the primary layer, it detects if 
any debugging daemons such as Android’s adbd or 
iOS/Android’s gdb and other ptrace-based debuggers are 
running and actively debugging the application, using both 
signature- and behavioural-detection. This is performed when 
an applications starts and is additionally verified whenever the 
V-OS firmware is called. While the application is running, V-
OS employs additional threads to detect debuggers in the 
background at regular intervals. This is done to detect 
debuggers such as gdb that may attach to the application while 
it is running. It observes the processes and sub-processes to 
detect if a debugger is being attached. 

The real time debugger detection uses background events 
to detect and defend against debuggers such as DDMS-
initiated attacks. V-OS verifies the Dalvik Virtual Machine 
(DVM) to detect debuggers that try to attach to the Dalvik 
runtime to debug or dump the process. It monitors Android 
kernel for any changes to detect memory dump attempts that 
may be initiated from the kernel. The debugger detection is 
performed in a way such that it does not affect the 
performance of the application or the battery life of the device.  
We have also determined that there are similar techniques 
available on iOS operating systems. 

Anti-emulation is a technique we have experimented with 
to provide additional protections against dynamic analysis, 
including software debugging but also extending to hardware 
debugging and malicious virtual machine emulation.  The idea 
is to perform self-benchmarking of critical portions of code in 
order to ensure that debugging breakpoints have not been 
inserted, and an attacker has not tampered with critical 
portions of the virtual processor such as the native system 
calls, using timing analysis from within the V-OS firmware to 
detect such an attack in progress.  However, while this concept 
works against some attacks, we have found this difficult to 
implement in production due to the native processor speed 
variation both between mobile devices as well as within an 
execution session due to multitasking. 

C. V-OS Memory Encryption 
To limit the exposure of sensitive data in memory, the data 

are encrypted when written to memory, and decrypted only 
just before use.  The encryption here can be optimised for 
speed, and retards reverse engineering by making the process 
of memory dumping much more onerous. 

We have evaluated several ways in which the memory 
encryption keys used by the V-OS virtual processor can be 
protected.  The fastest is to store the encryption keys in the 
global processor memory, which we call global memory 
encryption.  These keys can be generated at runtime and 
differentiated for each portion of memory. This requires that 
we assume the virtual processor to be well protected against 
dynamic memory attacks such as debugging and memory 
dumping.  The advantage of this approach is that it can be 
applied to both virtual codes and data with less than 10% 
performance slowdown. 

For more secure encryption of sensitive data such as other 
cryptographic keys and information when in use, stronger 
techniques can be used.  One technique we have implemented 
is to hide a portion of the encryption key used within the upper 
bits of the virtual memory address of the data variable, which 
we call discretionary memory encryption.  When the virtual 
firmware uses this virtual memory address to refer to the data, 
the V-OS processor automatically applies the encryption to the 
data.  This approach protects the fact that specific data is 
encrypted from the attacker as there is no information in and 
around the data that indicates it is specifically encrypted, other 
than the entropy of the data which would original be high if it 
was an encryption key.  This approach also continues to 
encrypt this data even if the global memory encryption is 
overcome. The attacker would need to go through the time-
consuming process of reverse-engineering the entire firmware 
in order to determine which pieces of data are encrypted in 
this manner and what the encryption keys are.  We can also 
use stronger encryption with this technique as it is only used 
for small pieces of sensitive data rather than for all code and 
data, and the additional performance impact is negligible. 

D. Tamper Response 
V-OS is also able to provide tamper response mechanisms 

that effectively prevent an attacker from retrieving the 
cryptographic keys.  We have implemented mechanisms that 
detect tampering of V-OS, by detecting attacks such as code 
modification, debugging or function hooking.  We have also 
developed mechanisms in V-OS that allow it to boot up 
securely, by performing self-tests and integrity checks of the 
virtual processor and firmware.  This protects V-OS from 
tampering and also makes it difficult for an attacker to try to 
bypass the protection mechanisms scattered throughout the 
system. 

When tampering is detected, we cause the firmware to 
follow a code path or set certain data to be different from the 
untampered system.  This can be triggered silently so that an 
attacker will not realise that the tampering has been detected 
unless he performs a full reverse engineering and code 
analysis of the virtual processor and firmware.  The objective 
of this technique is to trick the attacker into following fake 
code and data flows that either lead nowhere, or that use fake 
keys whose use can later be detected by a remote system 
outside of V-OS so as to disable the usage of the real keys. 

E. Native Code Obfuscation 
V-OS’s operation is that of a binary file containing 

instructions that are executed by a virtual processor.  The 
virtual processor, running in the native Android or iOS 

21



ARM/x86 environment, has the task of interpreting the 
instruction byte code in the V-OS firmware binary and 
mapping it to the required operations in the native 
environment. 

The reduced virtual processor instruction set used by V-OS 
contains approximately 32 unique instructions, which may 
take on arbitrary byte values.  As the determination of this 
instruction set is the first step to reverse engineering the 
firmware binary, this instruction set will be randomised and 
uniquely determined for each customer.  In this way, if one 
customer recovers the instruction set mapping, the security of 
another customer is not affected.  To guard against frequency 
analysis on the instruction set, the number of distinct bytes 
used to represent each instruction is proportional to its 
frequency of use in an average code. 

In addition, native code obfuscation is applied to the 
virtual processor code to resist reverse engineering.  This helps 
to prevent an attacker from analysing the specific 
implementation of the virtual machine processor’s random 
instruction set.  We have evaluated and integrated the 
Obfuscator-LLVM compiler port [9], although our process 
allows for any source code or binary obfuscation tool to be 
used.  As native code obfuscation leads to a significant 
slowdown of the V-OS processor, especially the stronger 
techniques such as control flow flattening, we have chosen to 
apply these to selected portions to deter reverse engineering 
while minimising the performance impact.  These help to 
protect against execution and call graph analysis from reverse 
engineering and debugging tools.  

 EVALUATION VII.

A. Security 
The security of a whitebox implementation relies on the 

attacker being able to determine the table data used so that the 
cryptanalysis can proceed.  By combining whitebox 
techniques with virtual machine protection, the attacker is 
forced along a manual path of reverse engineering or 
dynamically tracing the virtual firmware execution in order to 
try to bypass the various layers of protection to retrieve the 
table data.  Given that the virtual machine allows protections 
to be implemented at multiple levels, this will be a very time-
consuming process, and we consider the cryptosystem to be 
successful if an attacker is forced to attempt to perform such a 
full reverse engineering manually.  Given the tamper detection 
and response mechanisms in V-OS, the attacker is likely to 
trigger an incorrect code path if a combined manual and 
automated process is used to try to bypass the protections, 
which would result in a failure to retrieve the correct table 
data. 

If the attacker chooses not to try to trace the execution, he 
can try to identify the table data through the entropy of the 
data scattered throughout the firmware.  Even assuming that 
the portions of the table data can be identified perfectly 
through statistical cryptanalysis, there are now 2032 256-byte 
arrays whose order or allocation is undetermined.  This adds 
an additional work factor of 2032! which is unfeasible to 
attack directly.  Even assuming further weakening by an 
attacker who is able to distinguish between various types of 

table data from the different mapping tables, there are still far 
too many permutations for an attacker to try to cryptanalyse 
without a full analysis of the virtual firmware codes. 

B. Performance 
The current virtual machine implementation adds a time 

complexity of less than 27 over an unprotected native 
implementation and very little additional data above and 
beyond the underlying whitebox cryptographic table data used.  
This includes protections embedded within the virtual 
processor and firmware such as memory encryption and the 
code obfuscations we have selected.  We consider this 
performance to be acceptable for securing the root keys in a 
mobile use case, although we expect that the current 
performance can be optimised further, and this can also be 
tuned by adjusting both the V-OS and native code obfuscation 
performed. 

The additional protections such as anti-debugging and 
device fingerprinting do not add perceptible slowdown to the 
cryptosystem. 

The memory overhead of using V-OS can be as small as 
1MB when only AES is used, since both the virtual processor 
and firmware are written in embedded C.  This includes the 
508 KB for the whitebox AES table data in the virtual code.  
V-OS can allocate more memory when additional V-OS 
cryptographic functionality is required or when multiple 
virtual V-OS Trusted Applications are desired for the use case. 

In terms of the code sizes, the V-OS virtual processor 
currently uses about 100 KB, while the V-OS firmware 
including the whitebox AES implementation is approximately 
50 KB excluding the obfuscated table data embedded within 
the firmware binary. 

 FUTURE WORK VIII.

A. Strengthen Ties Between WBC and VMP 
The current implementation uses the virtual machine codes 

and data to help prevent reverse engineering, and help 
cryptanalysis, of the whitebox table data.  We propose to 
explore how these protections could be leveraged even more 
tightly with the table data to further prevent cryptanalysis, as 
well as to continue to quantify the work factor that an attacker 
would face in attacking such an enhanced implementation. 

B. Leveraging Additional Protections in VMP 
While the current implementation already implements a 

number of protection mechanisms to harden the virtual 
machine environment, we propose to explore how additional 
protections such as anti-debugging, anti-emulation, and 
memory encryption could be strengthened to make the 
protections even harder to bypass. 

We propose that further work in anti-emulation shall study 
how the timing analysis techniques can be applied on diverse 
mobile devices with irregular processing speeds, in order to 
make this technique more stable in production. 

The discretionary memory encryption can be extended to 
custom discretionary memory encryption techniques, whereby 
the encryption key to be used is also stored within a V-OS 

22



�

firmware function that is called whenever the processor is 
directed to encrypt a portion of memory.  For enhanced 
security, the memory encryption function can be implemented 
as a V-OS firmware function so that both the memory 
encryption key and implementation can be protected within 
the V-OS firmware. 

C. Custom S-Box 
As an additional option, the S-Box in the V-OS whitebox 

AES implementation can be replaced with another custom 
keyed S-Box that meets the requirement for linear and 
differential cryptanalytic resistance [10].  The BGE attack 
relies on approximating an affine transformation that 
characterises the randomised encodings and bijections, and 
validating the guess.  Without knowledge of the underlying S-
Box, the attacker needs to guess the S-Box used before 
attempting to recover the embedded key.  In the case of a 
wrong S-Box guess, the attacker will not be able to recover the 
correct AES key.  This in effect increases the work factor of 
the attack by the diversity of S-Boxes used. 

D. Use of VMP for Public Key Cryptography 
While this paper has focused primarily on how the 

protections of a virtual machine can strengthen a symmetric 
cryptographic system such as AES, many of the protections 
can apply to public key cryptography.  We propose to study 
how a whitebox RSA or ECC implementation could benefit 
from the code and data obfuscation, as well as the virtual 
machine protections of the V-OS architecture. 

 CONCLUSION IX.
In this paper, we propose the use of a hardened virtual 

machine that allows for the implementation of a simpler and 
smaller whitebox cryptography implementation in order to fit 
the size-constrained mobile or embedded environment.  This 
strengthens a whitebox cryptography implementation with 
virtual machine protections.  Further work should be focused 
on strengthening the virtual machine protections and tying 
these protections more closely with the whitebox table data, as 
well as exploring the use of custom AES S-boxes in such an 
implementation. 

Although this paper has focused on combining table-based 
AES whitebox cryptography, many of the protections 

described apply to other cryptographic protection 
requirements. These protections have been applied to other use 
cases such as public key cryptography, license control, and 
native application tamper protection by building cryptographic 
functionality on top of the V-OS virtual machine. 

ACKNOWLEDGMENT 
The authors are grateful to the anonymous reviewers for 

providing insightful comments and guidance for improving 
this paper. 

 

REFERENCES 
[1] S. Chow, P. Eisen, H. Johnson, and P.C. van Oorschot, “White-Box 

Cryptography and an AES Implementation,” in 9th Annual Workshop on 
Selected Areas of Cryptography (SAC 2002), Lecture Notes in 
Computer Science 2595, Springer-Verlag, 2003, pp. 250-270. 

[2] O. Billet, H. Gilbert, and C. Ech-Chatbi, “Cryptanalysis of a White Box 
AES Implementation,” in Selected Areas of Cryptography (SAC 2004), 
Lecture Notes in Computer Science 3357, Springer-Verlag, 2005, pp. 
227-240. 

[3] Y. Xiao and X. Lai, “A Secure Implementation of White-Box AES,” in 
2nd International Conference on Computer Science and its Applications 
(CSA 2009), IEEE, 2009, pp. 1-6. 

[4] Y. De Mulder , P. Roelse, and B. Preneel, “Cryptanalysis of the Xiao – 
Lai White-Box AES Implementation,” in 19th Annual Workshop on 
Selected Areas in Cryptography (SAC 2012), Lecture Notes in 
Computer Science 7707, Springer-Verlag, 2012, pp. 34-49. 

[5] S. Yang, Q. Liu and Q. Zhao, “A Secure Implementation of a Symmetric 
Encryption Algorithm in White-Box Attack Contexts,” Journal of 
Applied Mathematics 2013, Hindawi, 2013, pp. 1-9. 

[6] P. Biondi and D. Fabrice, “Silver needle in the skype,” Black Hat 
Europe (Amsterdam, the Netherlands, 2006). 

[7] S. Ghosh, J. Hiser, and J. W. Davidson, “Replacement Attacks Against 
VM-protected Applications,” in Proceedings of the 8th ACM 
SIGPLAN/SIGOPS Conference on Virtual Execution Environments, 
ACM, 2012, pp. 203-214. 

[8] M.  Jakobsson, M. K. Reiter, “Discouraging Software Piracy Using 
Software Aging,” in Security and Privacy in Digital Rights 
Management, ACM CCS-8 Workshop DRM 2001, Lecture Notes in 
Computer Science 2320, Springer-Verlag, 2002, pp. 1-12. 

[9] P. Junod, Obfuscator-LLVM, 2013. url: http://www.o-llvm.org/. 
[10] D. Lambić and M. Živković, “Comparison of Random S-Box Generation 

Methods,” Publ. de L’Institut Mathématique, Nouvelle série, tome 93 
(107) , 2013, pp. 109-115. 

[11] GlobalPlatform Card Specification, Version 2.2.1, Public Release, 
January 2011. url: http://www.globalplatform.org/specificationscard.asp 

 

23


