
FormatShield: A Binary Rewriting Defense
against Format String Attacks

Pankaj Kohli and Bezawada Bruhadeshwar

Centre for Security, Theory and Algorithmic Research (C-STAR)
International Institute of Information Technology

Hyderabad - 500032, India
pankaj kohli@research.iiit.ac.in, bezawada@iiit.ac.in

Abstract. Format string attacks allow an attacker to read or write any-
where in the memory of a process. Previous solutions designed to detect
format string attacks either require source code and recompilation of the
program, or aim to defend only against write attempts to security crit-
ical control information. They do not protect against arbitrary memory
read attempts and non-control data attacks. This paper presents For-
matShield, a comprehensive defense against format string attacks. For-
matShield identifies potentially vulnerable call sites in a running process
and dumps the corresponding context information in the program bi-
nary. Attacks are detected when malicious input is found at vulnerable
call sites with an exploitable context. It does not require source code or
recompilation of the program and can defend against arbitrary memory
read and write attempts, including non-control data attacks. Also, our
experiments show that FormatShield incurs minimal performance over-
heads and is better than existing solutions.

Keywords: Format String Attacks, Binary Rewriting, Intrusion Detec-
tion, System Security.

1 Introduction

Format string vulnerabilities are a result of the flexible features in the C pro-
gramming language in the representation of data and the use of pointers. These
features have made C the language of choice for system programming. Unfortu-
nately, this flexibility comes at a cost of lack of type safety and function argument
checking. The format string vulnerability applies to all format string functions
in the C library, and exists in several popular software and server programs
[4, 6, 9, 14, 16, 28]. Attackers have exploited format string vulnerabilities on a
large scale [12, 36], gaining root access on vulnerable systems. As of January
2008, Mitre’s CVE project [3] lists more than 400 entries containing the term
“format string”.

Format string vulnerabilities occur when programmers pass user supplied in-
put to a format function, such as printf, as the format string argument i.e.,
using code constructs such as printf(str) instead of printf("%s", str). This

Y. Mu, W. Susilo, and J. Seberry (Eds.): ACISP 2008, LNCS 5107, pp. 376–390, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

FormatShield: A Binary Rewriting Defense 377

int main(int argc , char **argv) {
char string [8] = "DATA";
if (argc > 1)

printf(argv [1]);
return 0;

}

Fig. 1. A program vulnerable to format string attack

...

...

...

...

...

...

High memory
addresses

Low memory
addresses

...

...
...
...

Address of argv[1]

D

A

T

A

\0

Address of argv[1]

D

A

T

A

H

E

\0

\0

L

O

St
ac

k
gr

ow
th

a. b.

L

...

\0

%x

%x

%x

%x

Fig. 2. Stack layout for the program given in Figure 1 when printf is called. a. On
giving a legitimate input, the program prints HELLO. b. On giving a malicious input
(“%x%x%x%x”), the program prints 44415441 (hex equivalent of “DATA”).

input is interpreted by the format function as a format string, and is scanned for
the presence of format specifiers such as %x, %s, %n etc. For each format specifier,
corresponding value or address is picked from the stack and is read or written,
depending on the format specifier. For example, the format specifier %d specifies
an integer value to be read from the stack, while the format specifier %n specifies
a value to be written to the address picked from the stack. An attacker can
use this to perform reads or writes to arbitrary memory locations. Vulnerable
functions in libc include printf family, warn and err family, syslog, vsyslog
and several others.

In Figure 1, we show an example of a program vulnerable to a format string
attack that passes the user input to printf. Here a malicious user could insert
format specifiers in the input to cause the program to misbehave. Figure 2 shows
the stack for this program when a legitimate and a malicious input in given.
The malicious user gives as input %x%x%x%x, which causes printf to pick and
display the next few bytes from the stack (44415441 - hex representation of
“DATA” in this case), allowing him to read the stack. Similarly, use of %s format
specifier makes the format function interpret the four bytes on the stack as the
address of the string to be displayed. Using direct parameter access, i.e. %N$d,

378 P. Kohli and B. Bruhadeshwar

allows an attacker to access the N th argument on the stack without accessing
the previous N − 1 arguments. The value of N is so specified by the attacker
such that the corresponding address is picked from the format string itself and
hence can be controlled by the attacker. This allows an attacker to read any
memory location within the address space of the process. The common form of
the attack uses %n format specifier, which takes an address to an integer as an
argument, and writes the number of bytes printed so far to the location specified
by the address. The number of bytes printed so far can easily be controlled by
printing an integer with large amount of padding such as %656d. Using %n format
specifier, an attacker can overwrite the stored return address on the stack with
the address of his own code, taking control of the program when the function
returns. Other targets include address of destructor functions in DTORS table,
address of library functions in Global Offset Table (GOT), function pointers and
other security critical data. Also, an attacker can crash the process using several
%s format specifiers, when an illegal address is picked from the stack, the program
terminates with a segmentation fault.

Many techniques have been devised to defend against format string attacks
[18, 15, 13, 10, 8, 30, 25, 19, 7]. All these approaches are valuable and defend
against arbitrary code execution attacks. However, each of them suffers from at
least one of the two drawbacks: either they require source code and recompilation
of the program to be protected, or they aim to defend only against write attempts
to security critical control information, such as return address, GOT and DTORS
entries, etc. They do not guard against arbitrary memory read attempts, which
can lead to critical information disclosure leading to further attacks. Also, none
of the previously proposed solutions protects against non-control data attacks,
in which an attacker targets a program specific security critical data, such as
a variable storing user privileges, instead of control information. Such attacks
have been studied in the past [20].

In this paper, we present FormatShield, a comprehensive solution to format
string attacks. FormatShield does not require source code and recompilation,
and can be used to protect legacy or proprietary programs for which source
code may not be available. It does not take into consideration the presence of
any specific format specifier such as %n in the format string, and thus, it can
defend against both types of format string attacks, i.e. arbitrary memory read
attempts and arbitrary memory write attempts. Also, FormatShield is capable
of defending against non-control data attacks. It does not rely on the target
of the format specifiers, and thus can protect against both, attacks that target
control information such as return address on the stack, and those which target
program specific security sensitive non-control information.

Organization of the Paper. The rest of the paper is organized as follows. Sec-
tion 2 presents the technical description of the approach used by FormatShield.
Section 3 describes the design and implementation of FormatShield. Section 4
presents experimental results on the effectiveness and performance evaluation.
Limitations are discussed in section 5, followed by related work in section 6.
Finally, section 7 concludes the paper.

FormatShield: A Binary Rewriting Defense 379

2 Overview of Our Approach

FormatShield works by identifying call sites in a running process that are po-
tentially vulnerable to format string attacks. A potentially vulnerable call site is
identified when a format function is called with a probable legitimate user input
as a format string argument. Further, a probable legitimate user input can be
identified by checking whether the format string is writable and without any for-
mat specifiers. The format string argument of a non-vulnerable call site, such as
in printf("%s", argv[1]), would lie in a non-writable memory segment, while
that of a vulnerable call site, such as in printf(argv[1]), would lie in a writable
memory segment. The key idea here is to augment the program binary with the
program context information at the vulnerable call sites. A program context rep-
resents an execution path within a program and is specified by the set of return
addresses on the stack. Since all execution paths to the vulnerable call site may
not lead to an attack, FormatShield considers only those with an exploitable
program context. For e.g., Figure 3 shows a vulnerable code fragment. Here the
vulnerability lies in the function output(), which passes its argument as the for-
mat string to printf. Although output() has been called from three different
call sites in main(), note that only one of these three, i.e. output(argv[1]),
is exploitable. Here, the contexts, i.e. the set of return addresses on the stack,
corresponding to all the three calls will be different, and thus the context cor-
responding to output(argv[1]) can easily be differentiated from those of other
two calls to output(). As the process executes, the exploitable program con-
texts are identified. The next time, if the vulnerable call site is called with an
exploitable program context with format specifiers in the format string, a vio-
lation is raised. When the process exits, the entire list of exploitable program
contexts is dumped into the binary as a new loadable read-only section, which
is made available at runtime for subsequent runs of the program. If the section
already exists, the list of exploitable program contexts is updated in the section.
The program binary is updated with context information over use and becomes
immune to format string attacks.

void output(char *str) {
printf(str);

}

int main(int argc , char **argv) {
output ("alpha ");
.....
output ("beta ");
.....
output(argv [1]);
.....

}

Fig. 3. Only the third call to output() is exploitable

380 P. Kohli and B. Bruhadeshwar

3 Implementation

FormatShield is implemented as a shared library that intercepts calls to the
vulnerable functions in libc, preloaded using LD PRELOAD environment variable.
This section explains the design and implementation of FormatShield. First we
explain how FormatShield identifies vulnerable call sites in a running process.
Then we describe the binary rewriting approach used to augment the binary
with the context information.

3.1 Identifying Vulnerable Call Sites

During process startup, FormatShield checks if the new section (named
fsprotect) is present in the binary of the process. This is done by resolving the
symbol fsprotect. If present, the list of exploitable program contexts is loaded.
During process execution, whenever the control is transferred to a vulnerable
function intercepted by FormatShield, it checks if the format string is writable.
This is done by looking at the process memory map in /proc/pid/maps. If
the format string is non-writable, corresponding equivalent function (such as
vprintf for printf) in libc is called since a non-writable format string cannot
be user input and hence cannot lead to an attack. However, if the format string is
writable, FormatShield identifies the current context of the program, and checks
if this context is in the list of exploitable program contexts. The current con-
text of the program, i.e. the set of return addresses on the stack, is retrieved by
following the chain of stored frame pointers on the stack. Instead of storing the
entire set of return addresses on the stack, FormatShield computes a lightweight
hash of the return addresses. If the current context is not present in the list
of exploitable contexts, FormatShield checks if the format string is without any
format specifiers. If the format string does not contain any format specifiers, it is
identified as a legitimate user input, and the current context is added to the list
of exploitable contexts. Any future occurrences of format specifiers in the format
string of such a call with an exploitable context is flagged as an attack. Other-
wise, if the format string contains format specifiers, it is not added to the list of
exploitable contexts. In either case, FormatShield calls the equivalent function
in libc. However, if the current context is already in the list of exploitable con-
texts, FormatShield checks if there are any format specifiers in the format string.
If the format string does not contains any format specifiers, FormatShield calls
the equivalent function in libc. Otherwise, if the format string contains format
specifiers, FormatShield raises a violation. On detecting an attack, the victim
process is killed, and a log is written to syslog.

Note that, if the format string is writable and contains format specifiers, it
could be a case when an exploitable context is not yet identified by FormatShield
and is being exploited by an attacker. However, FormatShield takes a safer step
of not identifying it as an attack, since dynamically created format strings with
format specifiers are commonly encountered and identifying such cases as attacks
would terminate an innocent process which is not under attack. Also, the default

FormatShield: A Binary Rewriting Defense 381

Space for
new sections
(multiple of
page size)ELF Header

Section Headers

.dynsym
.dynstr
.hash

.dynsym (old)

a. b.

.dynamic

.dynsym
.dynstr
.hash

Program Headers

fsprotect (new section)

Program Headers

.dynstr (old)
.hash (old)

.dynamic

ELF Header

Section Headers

Fig. 4. ELF binary a. before rewriting b. after rewriting

....
[003] 0x08048148 a------ .hash sz :00000040 link :04
[004] 0x08048170 a------ .dynsym sz :00000080 link :05
[005] 0x080481C0 a------ .dynstr sz :00000076 link :00
....

Fig. 5. Sections before rewriting the binary

....
[003] 0x080480E8 a------ .hash sz :00000044 link :04
[004] 0x08048030 a------ .dynsym sz :00000096 link :05
[005] 0x08048090 a------ .dynstr sz :00000088 link :00
....
[026] 0x08047114 a------ fsprotect sz :00003868 link :00
[027] 0x08048170 a------ sz :00000080 link :00
[028] 0x080481C0 a------ sz :00000076 link :00
[029] 0x08048148 a------ sz :00000040 link :00

Fig. 6. Sections after rewriting the binary. A new loadable read-only section named
fsprotect is added which holds the context information. The .dynsym, .dynstr and
.hash sections shown are extended copies of the original ones. The original .dynsym,
.dynstr and .hash are still loaded at their original load addresses.

action to terminate the process can be used as a basis to launch denial of service
(DoS) attack against the victim process by an attacker. However, silently return-
ing from the vulnerable function without terminating the process may lead to an
application specific error. For e.g., if the vulnerability lies in a call to vfprintf,
skipping the call may lead to no output being printed to terminal if the string is
being printed to stdout, which may not be fatal. However, if the string is being
printed to a file, skipping the vfprintf call may lead to a corrupted file. Termi-
nating the victim process would create “noise” that a conventional host-based
intrusion detection system can detect the intrusion attempt.

382 P. Kohli and B. Bruhadeshwar

DYNAMIC SYMBOL TABLE:
00000000 DF *UND* 000000 e7 __libc_start_main
00000000 DF *UND* 00000039 printf
080484 a4 g DO .rodata 00000004 _IO_stdin_used
00000000 w D *UND* 00000000 __gmon_start__

Fig. 7. Dynamic symbol table before rewriting the binary

DYNAMIC SYMBOL TABLE:
00000000 DF *UND* 000000 e7 __libc_start_main
00000000 DF *UND* 00000039 printf
080484 a4 g DO .rodata 00000004 _IO_stdin_used
00000000 w D *UND* 00000000 __gmon_start__
08047114 g DO fsprotect 0000000a fsprotect

Fig. 8. Dynamic symbol table after rewriting the binary. A new dynamic symbol named
fsprotect is added while rewriting the binary which points to the new section at
address 0x08047114.

3.2 Binary Rewriting

FormatShield uses an approach (Figure 4) similar to that used by TIED [22]
to insert context information in the program binary. FormatShield currently
supports only ELF [11] executables. In the ELF binary format, .dynsym section
of binary contains symbols needed for dynamic linking, .dynstr section contains
the corresponding symbol names, and .hash section holds a hash look up table
to quickly resolve symbols. .dynamic section holds the addresses of these three
sections. The information to be inserted is a list of hashes of stored return
addresses corresponding to exploitable contexts at different vulnerable call sites
in the program. During process exit, the entire list is dumped into the executable
as a new read-only loadable section. If the section is already present, the context
information in the section is updated. A typical ELF binary loads at virtual
address 0x08048000. To add a new section (Figures 5,6), FormatShield extends
the binary towards lower addresses, i.e. lower than address 0x08048000. This
is done to ensure that the addresses of existing code and data do not change.
To make the context information available at run time, a new dynamic symbol
(Figures 7,8) is added to the .dynsym section and the corresponding address is
set to that of the new section. Since this requires extending .dynsym, .dynstr
and .hash sections which cannot be done without changing the addresses of
other sections, FormatShield creates an extended copy of these sections, i.e.
.dynsym, .dynstr and .hash, and changes their addresses in .dynamic section.
The address of the new section is so chosen such that the sum of the sizes of the
four new sections is a multiple of page size1. The space overhead is of the order
of few kilobytes (less than 10 KB for most binaries).

1 As per ELF specification [11], loadable process segments must have congruent values
of the load address, modulo the page size.

FormatShield: A Binary Rewriting Defense 383

3.3 Implementation Issues

One of the issues with FormatShield is when the program uses some kind of
Address Space Randomization (ASR) [2, 21, 23]. ASR involves randomizing base
addresses of various segments so as to make it difficult for an attacker to guess
an address. Since the base addresses of various code segments are randomized,
the absolute memory locations associated with the set of return addresses will
change from one execution of the program to the next. To compensate for this,
we decompose each return address into a pair {name, offset}, where name
identifies the executable or the shared library, and offset identifies the relative
distance from the base of the executable or shared library.

4 Evaluation

We conducted a series of experiments to evaluate the effectiveness and perfor-
mance of FormatShield. All tests were run in single user mode on a Pentium-4
3.2 GHz machine with 512 MB RAM running Linux kernel 2.6.18. All programs
were compiled with gcc 4.1.2 with default options and linked with glibc 2.3.6.

4.1 Effectiveness

WetestedFormatShield onfive programswith known format string vulnerabilities:

– wuftpd version 2.6.0 and earlier suffer from a format string vulnerability [6]
in the “SITE EXEC” implementation. A remote user can gain a root shell by
exploiting this vulnerability.

– tcpflow 0.2.0 suffers from a format string vulnerability [28], that can be
exploited by injecting format specifiers in command line arguments. A local
user can gain a root shell by exploiting this vulnerability.

– xlock 4.16 suffers from a format string vulnerability [29] when using com-
mand line argument -d, that can be used by a local user to gain root privi-
leges.

– rpc.statd (nfs-utils versions 0.1.9.1 and earlier) suffers from a format
string vulnerability [9], which allows a remote user to execute arbitrary code
as root.

– splitvt version 1.6.5 and earlier suffer from a format string vulnerability
when handling the command line argument -rcfile. A local user can gain
a root shell2 by exploiting this vulnerability.

The above programs were trained “synthetically” with legitimate inputs be-
fore launching the attacks so as to identify the vulnerable call sites and the
corresponding exploitable contexts. FormatShield successfully detected all the
above attacks, and terminated the programs to prevent execution of malicious
code. The results are presented in Table 1.
2 The attack gives a root shell if the program is installed suid root, otherwise it gives

a user shell.

384 P. Kohli and B. Bruhadeshwar

Table 1. Results of effectiveness evaluation

Vulnerable
program

CVE # Results without
FormatShield

Results with
FormatShield

wuftpd CVE-2000-0573 Root Shell acquired Process Killed
tcpflow CAN-2003-0671 Root Shell acquired Process Killed
xlock CVE-2000-0763 Root Shell acquired Process Killed
rpc.statd CVE-2000-0666 Root Shell acquired Process Killed
splitvt CAN-2001-0112 Root Shell acquired 2 Process Killed

Table 2. Comparison with previous approaches

Feature LibFormat Format-
Guard

Libsafe White-
Listing

Format-
Shield

Works without source code � ✕ � ✕ �
Supports vprintf like functions � ✕ � � �
Supports wrapper functions ✕ ✕ � � �
Prevents read attacks ✕ �3 ✕ ✕ �
Prevents write attacks � � �4 � �
Prevents non control data attacks ✕ �3 ✕ ✕ �
Not format string specific � � � ✕ �

To check the effectiveness of FormatShield on non-control data attacks, we
modified the publicly available exploit for the wuftpd 2.6.0 format string vulner-
ability [6] to overwrite the cached copy of user ID pw->pw uid with 0 so as to to
disable the server’s ability to drop privileges. FormatShield successfully detected
the write attempt to the user ID field and terminated the child process. Table 2
shows a detailed comparison of FormatShield and the previous approaches to
detection of format string attacks.

4.2 Performance Testing

To test the performance overhead of FormatShield, we performed micro bench-
marks to measure the overhead at function call level, and then macro benchmarks
to measure the overhead at application level.

Micro benchmarks. To measure the overhead per function call, we ran a set
of simple benchmarks consisting of a single loop containing a single sprintf

3 FormatGuard protects by counting arguments and number of format specifiers, and
thus can protect against arbitrary memory reads and non-control data attacks. How-
ever, it does not work for format functions called from within a wrapper function
and those with variable argument lists such as vprintf.

4 Libsafe defends against writes to stored return address and frame pointer, but does
not protect against writes to GOT and DTORS entries.

FormatShield: A Binary Rewriting Defense 385

Table 3. Micro benchmarks

Benchmark FormatGuard White-Listing FormatShield
sprintf, no format specifiers 7.5% 10.2% 12.2%
sprintf, 2 %d format specifiers 20.9% 28.6% 4.6%
sprintf, 2 %n format specifiers 38.1% 60.0% 3.3%
vsprintf, no format specifiers No protection 26.4% 15.5%
vsprintf, 2 %d format specifiers No protection 39.8% 1.9%
vsprintf, 2 %n format specifiers No protection 74.7% 3.4%

call. A six character writable string was used as the format string. With no
format specifiers, FormatShield added an overhead of 12.2%. With two %d format
specifiers, overhead was found to be 4.6%, while with two %n format specifiers the
overhead was 3.3%. We also tested vsprintf using the same loop. The overheads
were found to be 15.5%, 1.9% and 3.4% for no format specifiers, two %d format
specifiers, and two %n format specifiers respectively. The overheads were found to
be much less than those with the previous approaches. Table 3 compares micro
benchmarks of FormatShield with those of FormatGuard and White-Listing.

Macro benchmarks. To test the overhead at the application level, we used
man2html since it uses printf extensively to write HTML-formatted man pages
to standard output. The test was to translate 4.6 MB of man pages. The test
was performed multiple times. It took man2html 0.468 seconds to convert with-
out FormatShield, and 0.484 seconds with FormatShield. Thus, FormatShield
imposed 3.42% run-time overhead.

5 Discussion

In this section, we discuss the false positives and false negatives of FormatShield,
and its limitations when applied to the software protection.

5.1 False Positives and False Negatives

FormatShield can give false positives or false negatives in certain cases. It is
when a format string is dynamically constructed as a result of a conditional
statement and then passed to a format function. A false positive can be there
if one outcome of the condition creates a format string with format specifiers
and the other outcome creates one without format specifiers. Similarly, a false
negative can be there when one outcome of the condition reads user input into
the format string and the other outcome creates a format string with format
specifiers. Also, there can be a false negative when format specifiers are present
at the vulnerable call site but the corresponding context is not yet identified.

5.2 Limitations

FormatShield requires frame pointers to obtain the set of stored return addresses
on the stack, which are available in most cases. However, it may not be able to

386 P. Kohli and B. Bruhadeshwar

protect programs compiled without frame pointers, such as those compiled with
-fomit-frame-pointerflag of gcc. Also, FormatShield requires that exploitable
contexts of the vulnerable call sites are identified before it can detect attacks.
This may require the program to be trained, either by deploying or by exercising
“synthetically”. Another limitation of FormatShield is that it requires programs
to be dynamically linked (since library call interpositioning works only with dy-
namic linked programs). However, this is not a problem if we consider Xiao’s
study [31] according to which 99.78% applications on Unix platform are dynam-
ically linked. Also, since FormatShield keeps updating the context information
in the program binary till it becomes immune to format string attacks, it may
interfere with some integrity checkers.

6 Related Work

Several techniques have been proposed to defend against format string attacks.
These can be divided into three categories: compile-time approaches, run-time
approaches, and combined compile-time and run-time approaches.

6.1 Compile-Time Approaches

PScan [7] works by looking for printf-style functions where the last parameter
is a non-static format string. Similar to PScan’s functionality, gcc itself provides
flags such as “-Wformat=2” to statically check the format string and issue warn-
ings for dangerous or suspect formats. Both PScan and gcc work at the lexical
level. They require source code, are subject to missing format string vulnerabil-
ities and even issue warnings about safe code. Another compile-time technique
for detecting format string attacks is presented by Shankar et al [8]. In their
approach, all untrusted inputs are marked as tainted, and the propagation of
tainted data is tracked throughout the program operation. Any data derived
from tainted data is itself marked as tainted. If at some point in the program,
the tainted data is used as a format string, an error is raised. This approach does
not work for already compiled code. Moreover, it requires programmers’ efforts
to specify which objects are tainted.

6.2 Run-Time Approaches

LibFormat [10] works by intercepting calls to printf family of functions, and
aborts any process if the format string is writable and contains %n format spec-
ifier. This technique is quite effective in defending against real format string
attacks, but in most cases writable format strings containing %n format specifier
are legal, and consequently it generates many false alarms. Libsafe [13] imple-
ments a safe subset of format functions that will abort the running process if the
address corresponding to a %n format specifier points to a return address or a
frame pointer. However, it still allows writes to GOT and DTORS entries, and there-
fore is subject to missing many attack attempts. Lin et al [15] use dynamic taint

FormatShield: A Binary Rewriting Defense 387

and validation to detect format string attacks. In their approach, if the format
string is non-static and contains %n format specifier, and if the corresponding
address points to the return address, frame pointer, or GOT or DTORS entries,
an attack is detected and the process is aborted. The approach is effective in
preventing arbitrary memory write attempts to control sensitive addresses, but
does not defends against arbitrary memory read attempts and non-control data
attacks. Kimchi [25] is another binary rewriting defense technique, that inserts
code in the binary which prevents a format string to access memory beyond
the stack frame of its parent function. However, it is subject to missing many
attack attempts when the format string itself is declared in the parent function,
and therefore lies in the parent function’s stack frame. Lisbon [30] identifies the
input argument list, and places a canary word immediately after the list’s end.
A violation is raised if the program attempts to access the canary word. This
approach works for attacks that aim to probe the underlying stack using a series
of %x%x%x... format specifiers. However, the approach will miss all the read and
write attempts where the attacker uses a format specifiers with direct parame-
ter access. For example, the input %18$x will read the 18th argument without
accessing the canary. All the above approaches detect write attempts using %n
format specifiers but fail to detect arbitrary memory read attempts.

Address Space Randomization (ASR) [2, 21, 23, 34] is a generic technique to
defend against any kind of memory corruption attack. The idea behind ASR is
that the successful exploitation of such an attack requires an attacker to have
knowledge of the addresses where the critical information is stored and/or where
the attacker specified code is present. By randomizing the locations of various
memory segments and other security critical structures, ASR makes it hard for an
attacker to guess the correct address. For the Intel x86 architecture, PaX ASLR
[1, 2] provides 16, 16 and 24 bits of randomness for the executable, mapped
and stack areas respectively. However, many successful derandomization attacks
against PaX have been studied in the past. Durden [32] uses a format string
attack to deduce the value of delta mmap. Another brute force derandomization
attack has been presented by Shacham et al [17], which defeats PaX ASLR in
less than 4 minutes. Instruction Set Randomization (ISR) [24, 27] is another
generic defense technique that defends against code injection attacks by ran-
domizing the underlying instruction set. Since the attacker does not know the
randomizing key, his injected code will be invalid for the injected process, caus-
ing a runtime exception. However, overheads associated with ISR make it an
impractical approach to defend against attacks. Also, attacks have been pub-
lished [33] capable of defeating ISR in about 6 minutes. Moreover, both kinds of
randomizations still allow information disclosure attacks.

6.3 Combined Compile-Time and Run-Time Approaches

FormatGuard [18] provides argument number checking for printf-like functions
using GNU C compiler. Programs need to be recompiled without any modifica-
tion. It provides protection against only a subset of functions and does not work
for functions that expect variable argument lists such as vprintf. White-listing

388 P. Kohli and B. Bruhadeshwar

[19] uses source code transformation to automatically insert code and maintains
checks against the whitelist containing safe %n writable address ranges via knowl-
edge gained from static analysis. Both FormatGuard and White-Listing require
source code and recompilation of the program.

7 Conclusion and Future Work

Format string vulnerabilities are one of the few truly threats to software secu-
rity. This paper described the design, implementation and evaluation of Format-
Shield, a tool that protects vulnerable programs by inserting context information
in program binaries. Although the current implementation is designed to work
on Linux platform, the same approach can be made to work on Win32 platform
as well, using the Detours [35] framework. We have shown that FormatShield
is effective in stopping format string attacks, and incurs a very nominal perfor-
mance penalty of less than 4%. However, FormatShield requires the process to
be trained using synthetic data or by deploying in order to identify vulnerable
call sites. We believe static analysis can be used to identify such vulnerable call
sites. Hence, the future work involves covering this limitation of FormatShield
to make it much more effective in defending against format string attacks.

References

[1] PaX. Published on World-Wide Web (2001), http://pax.grsecurity.net
[2] PaX Team. PaX address space layout randomization (ASLR),

http://pax.grsecurity.net/docs/aslr.txt
[3] CVE - Common Vulnerabilities and Exposures, http://www.cve.mitre.org
[4] Kaempf, M.: Splitvt Format String Vulnerability,

http://www.securityfocus.com/bid/2210/
[5] CWE - Vulnerability Type Distributions in CVE,

http://cve.mitre.org/docs/vuln-trends/index.html
[6] tf8.: Wu-Ftpd Remote Format String Stack Overwrite Vulnerability,

http://www.securityfocus.com/bid/1387
[7] De Kok, A.: PScan: A limited problem scanner for C source files,

http://www.striker.ottawa.on.ca/∼aland/pscan/
[8] Shankar, U., Talwar, K., Foster, J.S., Wagner, D.: Detecting format string vul-

nerabilities with type qualifiers. In: Proceedings of the 10th USENIX Security
Symposium (Security 2001), Washington, DC (2001)

[9] Jacobowitz, D.: Multiple Linux Vendor rpc.statd Remote Format String Vulner-
ability, http://www.securityfocus.com/bid/1480

[10] Robbins, T.: Libformat,
http://www.wiretapped.net/∼fyre/software/libformat.html

[11] Tool Interface Standard (TIS) Committee: Executable and linking format (ELF)
specification, version 1.2 (1995)

[12] CERT Incident Note IN-2000-10, Widespread Exploitation of rpc.statd and wu-
ftpd Vulnerabilities (September 15, 2000)

[13] Tsai, T., Singh, N.: Libsafe 2.0: Detection of Format String Vulnerability Exploits,
http://www.research.avayalabs.com/project/libsafe/doc/
whitepaper-20.pdf

http://pax.grsecurity.net
http://pax.grsecurity.net/docs/aslr.txt
http://www.cve.mitre.org
http://www.securityfocus.com/bid/2210/
http://cve.mitre.org/docs/vuln-trends/index.html
http://www.securityfocus.com/bid/1387
http://www.striker.ottawa.on.ca/~aland/pscan/
http://www.securityfocus.com/bid/1480
http://www.wiretapped.net/~fyre/software/libformat.html
http://www.research.avayalabs.com/project/libsafe/doc/whitepaper-20.pdf
http://www.research.avayalabs.com/project/libsafe/doc/whitepaper-20.pdf

FormatShield: A Binary Rewriting Defense 389

[14] Pelat, G.: PFinger Format String Vulnerability,
http://www.securityfocus.com/bid/3725

[15] Lin, Z., Xia, N., Li, G., Mao, B., Xie, L.: Transparent Run-Time Prevention of
Format-String Attacks Via Dynamic Taint and Flexible Validation. In: De Meuter,
W. (ed.) ISC 2006. LNCS, vol. 4406, Springer, Heidelberg (2007)

[16] NSI Rwhoisd Remote Format String Vulnerability,
http://www.securityfocus.com/bid/3474

[17] Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., Boneh, D.: On the
effectiveness of address-space randomization. In: Proceedings of the 11th ACM
conference on Computer and communications security, Washington DC, USA,
October 25-29 (2004)

[18] Cowan, C., Barringer, M., Beattie, S., Kroah-Hartman, G.: FormatGuard: Auto-
matic protection from printf format string vulnerabilities. In: Proceedings of the
10th USENIX Security Symposium (Security 2001), Washington, DC (2001)

[19] Ringenburg, M., Grossman, D.: Preventing Format-String Attacks via Automatic
and Efficient Dynamic Checking. In: Proceedings of the 12th ACM Conference on
Computer and Communications Security (CCS 2005), Alexandria, Virginia (2005)

[20] Chen, S., Xu, J., Sezer, E.C., Gauriar, P., Iyer, R.K.: Non-control-data attacks
are realistic threats. In: Proceedings of the 14th conference on USENIX Security
Symposium, Baltimore, MD (2005)

[21] Bhatkar, S., DuVarney, D.C., Sekar, R.: Address obfuscation: An efficient ap-
proach to combat a broad range of memory error exploits. In: USENIX Security
Symposium, Washington, DC (August 2003)

[22] Avijit, K., Gupta, P., Gupta, D.: TIED, LibsafePlus: Tools for Runtime Buffer
Overflow Protection. In: Proceedings of the 13th USENIX Security Symposium,
San Diego, CA (2004)

[23] Bhatkar, S., Sekar, R., DuVarney, D.C.: Efficient Techniques for Comprehensive
Protection from Memory Error Exploits. In: Proceedings of the 14th USENIX
Security Symposium, July 31-August 05, p. 17 (2005)

[24] Barrantes, E.G., Ackley, D.H., Palmer, T.S., Stefanovic, D., Zovi, D.D.: Ran-
domized Instruction Set Emulation to Disrupt Binary Code Injection Attacks.
In: Proceedings of the 10th ACM conference on Computer and communications
security, Washington D.C, USA (October 27-30, 2003)

[25] You, J.H., Seo, S.C., Kim, Y.D., Choi, J.Y., Lee, S.J., Kim, B.K.: Kimchi: A
Binary Rewriting Defense Against Format String Attacks. In: WISA 2005 (2005)

[26] Cowan, C., Pu, C., Maier, D., Hinton, H., Walpole, J., Bakke, P., Beattie, S.,
Grier, A., Wagle, P., Zhang, Q.: Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks. In: Proceedings of the 7th USENIX Security
Symposium, San Antonio, TX, pp. 63–78 (January 1998)

[27] Kc, G.S., Keromytis, A.D., Prevelakis, V.: Countering Code-Injection Attacks
with Instruction-Set Randomization. In: Proceedings of the 10th ACM conference
on Computer and Communications Security, Washington D.C, USA, October 27-
30 (2003)

[28] @stake, Inc. tcpflow 0.2.0 format string vulnerability (August 2003),
http://www.securityfocus.com/advisories/5686

[29] bind: xlockmore User Supplied Format String Vulnerability,
http://www.securityfocus.com/bid/1585

[30] Li, W., Chiueh, T.-c.: Automated Format String Attack Prevention for
Win32/X86 Binaries. In: Proceedings of 23rd Annual Computer Security Ap-
plications Conference, Florida (December 2007)

http://www.securityfocus.com/bid/3725
http://www.securityfocus.com/bid/3474
http://www.securityfocus.com/advisories/5686
http://www.securityfocus.com/bid/1585

390 P. Kohli and B. Bruhadeshwar

[31] Xiao, Z.: An Automated Approach to Software Reliability and Security. Invited
Talk, Department of Computer Science. University of California at Berkeley
(2003)

[32] Durden, T.: Bypassing PaX ASLR protection. Phrack Magazine 59(9) (June
2002), http://www.phrack.org/phrack/59/p59-0x09

[33] Sovarel, N., Evans, D., Paul, N.: Where’s the FEEB? The Effectiveness of Instruc-
tion Set Randomization. In: 14th USENIX Security Symposium (August 2005)

[34] Xu, J., Kalbarczyk, Z., Iyer, R.: Transparent Runtime Randomization for Security.
In: Fantechi, A. (ed.) Proc. 22nd Symp. on Reliable Distributed Systems –SRDS
2003, pp. 260–269. IEEE Computer Society, Los Alamitos (2003)

[35] Hunt, G., Brubacher, D.: Detours: Binary interception of Win32 functions. In:
Proceedings of the 3rd USENIX Windows NT Symposium, Seattle, WA, pp. 135–
143 (1999)

[36] Lemos, R.: Internet worm squirms into Linux servers. Special to CNET News.com
(January 17, 2001), http://news.cnet.com/news/0-1003-200-4508359.html

http://www.phrack.org/phrack/59/p59-0x09
http://news.cnet.com/news/0-1003-200-4508359.html

	Introduction
	Overview of Our Approach
	Implementation
	Identifying Vulnerable Call Sites
	Binary Rewriting
	Implementation Issues

	Evaluation
	Effectiveness
	Performance Testing

	Discussion
	False Positives and False Negatives
	Limitations

	Related Work
	Compile-Time Approaches
	Run-Time Approaches
	Combined Compile-Time and Run-Time Approaches

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

